Specialization Name: Dynamic Systems

PhD Program in Dynamic Systems

Program Overview

The PhD program in Dynamic Systems aims to develop an in-depth understanding of **Ordinary Differential Equations (ODEs)** and their theoretical and applied analysis. The program focuses on studying the **qualitative behavior of solutions, stability, chaos, control, and applications** in various fields such as **physics, engineering, biology, economics, and computational sciences**.

Core Courses

- Ordinary Differential Equations (ODEs) Theory
 - Existence and Uniqueness Theorem

- Dependence on Initial Conditions and Parameter Variations
- Series Solutions and Convergence Theories

Stability Analysis in Dynamical Systems

- Lyapunov Methods for Stability
- Stability of Linear and Nonlinear Systems
- Bifurcation and Phase Transitions Analysis

Physical and Engineering Applications of Differential Equations

- Hamiltonian Systems
- Dynamical Systems in Mechanics and Robotics
- Fluid Dynamics and Differential Equations in Aerodynamics

Numerical Methods for Differential Equations

- Euler and Runge-Kutta Methods for Solving ODEs
- Error and Numerical Analysis of Approximate Solutions
- Computational Programming Using MATLAB, Mathematica, and Python

Chaos and Nonlinear Systems

- Chaos Theory in Dynamical Systems
- Strange Attractors and Chaos Analysis
- Bifurcation Theory and Stochastic Dynamics

Advanced Topics (Additional Courses)

Control Theory and Optimization in Dynamical Systems

- Optimal Control
- Stochastic ODEs and Markovian Dynamical Systems
- Applications in Artificial Intelligence and Robotics

Stochastic Differential Equations (SDEs)

- Analysis of Stochastic Processes
- Applications in Economics, Finance, and Biological Systems

Dynamics in Complex Systems

- Mathematical Modeling in Dynamic Networks
- Dynamic Data Analysis and Predictive Modeling

Spectral Analysis of Dynamical Systems

- Fourier Analysis and Spectral Methods
- Applications in Signal Processing, Wave Phenomena, and Electrical Systems

Complete Course Table

Category	Core Courses	Advanced Courses
Mathematical Theory	 Existence and Uniqueness Theorem 	- Stochastic ODEs
	- Stability Analysis Using Lyapunov Methods	- Spectral Analysis of Dynamical Systems
	 Bifurcation and Phase Transition Analysis 	- Dynamics in Complex Systems
Numerical Methods	 Euler and Runge-Kutta Methods for ODEs 	 Mathematical Modeling in Dynamic Networks
	 Numerical Analysis and Approximate Solution Accuracy 	 Dynamic Data Analysis and Predictive Modeling
Nonlinear Systems and Chaos	 Chaos Theory and Strange Attractors 	 Applications in Economics, Finance, and Biological Systems
	- Analysis of Nonlinear Dynamical Systems	 Control and Optimization in Dynamical Systems
Practical Applications	- Hamiltonian Systems and Analytical Mechanics	 Applications in Artificial Intelligence and Robotics
	 Fluid Dynamics and Aerodynamic Systems 	- Markovian Dynamical Systems
Research and PhD Thesis	- Conducting Scientific Research and Publications	- PhD Dissertation Defense